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Anhui, People's Republic of  China 
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Abstract. We show that the linear systems associated with some integrable hierarchies of 
the soliton equations in 2+ I dimensions can be constrained to integrable hierarchies in 
1 + 1 dimensions such that submanifolds solutions of the given systems in 2+ 1 can be 
obtained by solving the resulting integrable systems in 1 + 1 dimensions. The constraints 
of the KP hierarchy to  the AKNS and Burgers hierarchies respectively are shown in detail 
and the results of these for the modified KP and 2 + 1  dimensional analogue of the 
Caudrey-Dodd-Gibbon-Kotera-jawata equations to severai integrable systems in i + i 
are given. 

1. Introduction 

It has been shown that many finite dimensional integrable systems naturally arise as 
the restriction of integrable hierarchy of the soliton equations in one spatial and one 
temporal (i.e. 1 + 1) dimensions to a finite dimensional manifold invariant with respect 
to all equations in the hierarchy (see e.g. [1-4]). A well known example is the constraint 
of the Korteweg-de Vries (Kdv) hiearchy to the pure multisolitons submanifold [l ,  21. 
In this case, the constraint is realized by the identification of potential of the Kdv 
hiearchy to the squared eigenfunction and the resulting finite dimensional systems for 
th eigenfunction as the dynamicai variabie can be proved to be compieteiy integrabie 
in the sense of the Liouville theorem [3,4]. 

Recently, the above study has been generalized to the soliton equations in two 
spatial and one temporal (i.e. 2 +  1 )  dimensions [5,6]. For instance, by identifying the 
potential U (i.e. the simplest conserved covariant) of the following Kadomtsev- 
Petviashvili (KP) equation 

(1.1) I u g  = a,( U )  = a  Ji'u,. +$U, + juu, 

to its squared eigenfunction prp* (i.e. the conserved covariant generator), the associated 
linear systems for rp and their adjoints for 'p* are constrained to the 1 + 1 dimensional 
integrable system consisting of the generalized nonlinear Schrodinger ( NS) and the 
generalized modified Kdv (MKdv) equations [5,6]. These equations are the first two 
non-trivial ones in the AKNS hiearchy. As a consequence, one is able to obtain solutions 
of the K P  equation by solving the resulting integrable system in 1 + 1 dimensions. 

The main purpose of the present paper is to investigate the constraints for the 
linear systems associated with all the integrable hiearachy of equations in 2 + 1  
dimensions. First of all, we show that the constaint U = -2rprp* of [ S ,  61 on the linear 
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systems and their adjoints of the KP hierarchy leads to the whole of the AKNS hierarchy 
for dynamical variables ‘p and ‘p*. This constraint is a natural generalization of that 
for the KdV hierarchy; however, it is by no  means unique in the sense that a constraint 
leads the integrable system in 2 + 1 to the integrable systems in 1 + 1 dimensions. In 
section 4, we show that the other constraint U = 2vP, on the potential and the eigenfunc- 
tion leads the linear systems of the K P  hierarchy to the 1 + 1 dimensional Burgers 
hierarchy which is linearizahle by the Cole-Hopf transformation. An important sig- 
nificance of these two constraints is that the submanifolds solutions of the K P  hierarchy 
can be constructed by solving the resulting 1 + 1 dimensional integrable systems. Here 
we are not going to display these solutions of the KP hierarchy obtained in this way-the 
interested reader can find them in our previous papers [ 5 , 7 ] .  In section 5 ,  we show 
the similar constraint of other 2 +  1 dimensional integrable systems including the 
modified Kadomtsev-Petviashvili (MKP) and the 2+ 1 dimensional analogue of the 
Caudrey-Dodd-Gibbon-Kotera-Sawada (CDGKS) equations, and give concluding 
remarks in the last section. 

Since we will describe the constraints of the KP systems in detail in section 2 we 
give a brief survey of the construction of the KP hierarchy and the associated linear 
systems in terms of the mastersymmetry approach. 
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2. The KP hierarchy 

The KP hierarchy constructed in terms,of the mastersymmetry approach is the following 
class of commuting flows (see e.g. [S-lo]) 

U,. = a.(u) (2.1) 

al(u)  = U, 
a4(u)  = fa;*u,, + u,a;’ uy +tu,, + 2uu, 

where 

a,(u)  is in (1.1) 
(2.2) 

az(u) = uy 

and the other higher-order ones are derived by 

with 

b(u) = 2ya, (u)+xaz(u)+2a; ’u ,  (2.4) 

being the first non-trivial mastersymmetry [8-lo]. a ’ , [ b ] ,  etc. in (2.3) denotes the 
Gateaux derivative of a , (u )  

d 
aL[b]  = lim- a,(u+ Eb) 

r - ~  a& 

in the direction b ( u ) ,  etc. 

ity conditions of the following linear systems [ I l ,  121: 
For n = 3, (2.1) is the K P  equation (1.1). All the equations in (2.1) are the compatihil- 

L q = O  L = a, +a:+ u (2.6) 
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where the Lax operators are the polynomials in a, such that 

= [A., Ll (2.8) 

identically. These Lax operators are derived as follows: 

(2.9) 
A & ) = J ,  A,(u) = -(a:+ U )  

A,(u) =a:+?uJ, +:(U, -J;'u,) 

and the others are given by 

1 
n An+, =- (AXbI- B'[a.l+[A,, B1) (2.10) 

where 

E( U )  = ZYA,+XA,- a, -fa;'u 

N u )  = [B, Ll 

satisfying 

(2.11) 

(2.12) 

identically. The operator B ( u )  in (2.11) is also a polynomial in J, but with the leading 
term's coefficient being proportional to y. It generates all A. in the same way as the 
mastersymmetry b i u )  of ( U j  does in (2.3). 

For an operator A(u)=Za,(u)J:J$, if we define its adjoint formally by A*(u)= 
S (-l)'+'Jb.a,(u), then the adjoints of the linear systems read 

L*9* = 0 L* = ay -a: - U (2.13) 

( ~ * ) , . = - A ? P * .  (2.14) 

The operators A: also satisfy 

a.(u)  = [L* ,  A:]. (2.15) 

They can be generated independently by 

1 
A$+, =_((A?j'[bl-(B*)'[a,l+CB*,A~l) (2.16) 

with 

E* =2yAf+xAT- a,-f ( J y ' u ) .  (2.17) 

The quantity qq* is the well known squared eigenfunction of the K P  system. It 

T,. = - (aL)*[~l  (2.18) 

also solves the equation [13] 

for ~ ( u ) ,  thus q'p* is the conserved covariant generator of the KP hierarchy (2.1). 

3. Constraint of the KP hierarchy to the AKNS hierarchy 

Let us identify the simplest conserved covariant U of the K P  hierarchy with the conserved 
covariant generator qp* as follows [5, 61: 

(3.1) = -29q* = -2 4' 
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where q = (p and r = (p* are used for simplicity. The spectral problem (2.6) and its 
adjoint (2.13) then become 

Y Cheng and Y-s Li 

(3.2a) 

(3.26) 
which is the generalized NS equation for the dynamical variables q and r. Inserting 
(3.1) into the linear equation governing the time evolution of the eigenfunction and 
its adjoint for the KP equation (i.i) (i.e. the equation in (2.7) and (i.i4j with n = 3 j  
and using (3.2) leads to the generalized MKdv equation 

(3.3a) 

(3.3b) 

The resulting equations (3.2) and (3.3) are the first two non-trivial equations in the 
1+1  dimensional AKNS hierarchy. Conversely, if q and r solve both (3.2) and (3.3),  
then U given by (3.1) solves the KP equation (1.1).  Exact solutions of the KP equation 
obtained in this way have been shown in [ 5 ] .  

In the following, we show that if q and r satisfy (3.2), the constraint (3.1) leads to 
the whole of the linear systems (2.7) and their adjoints (2.14) of the KP hierarchy to 
the whole of the AKNS hierarchy, and solutions of both (3.2) and the nth-order equation 
in !he avNs hierarchy give rise to solutions of the nth-order KP equation in (2.1). 

For a scalar or an operator F( U )  depending on U, we define that 

F ( u ) l ~  =F(U)I.--Z~~ (3.4) 
is the scalar or operator depending on q and r, where g and r satisfy the generalized 
NS equation (3.2). 

Lemma 1. For a.(u) and b ( u )  given in (2.2)-(2.4), we have 
a.( u)IR = -2( h, Jan( 6)) 
b(u)lR = -2(1i, JF(h) )  

where 

and @ is the recursion operator of the AKNS system 

@ = (  -d,-t2qa;lr 2qa;Iq ) 
-2rqa;'r aX-2ra;'q ' 

(/;g)=f g +/ g 

In (3.5) and (3.6), (,) is defined as 

for any f =  ( / ( ' ) , / ( 2 ) ) T  and g = (g"), g"')'. 

(11 ( I 1  (2)  (21 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 
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Proof: Notice that @CO)  in (3.9) also generates d. in the same way as b ( u )  does in 
(2.3); it plays the role of mastersymmetry of the AKNS hierarchy (see e.g. [141). By 
direct calculation, we can check (3.5) for n = 1 and (3.6). If (3.5) holds for arbitrary 
n,  then 

a 
a€ aL[b]ln = lim - a.(u + &b)lR 

a 
.-ode 

= ~ i m  - -2(1i+ &, 

= - z ( u , ~ a ~ ~ ~ ~ - z ( b , ~ ~ ~ j  

+ E @ )  

- 

and similarly 

b’[a.]l,  = -2(E, JF[dn])-2(d. ,  J6).  

Thus for n + 1, we find 

a.+,(u)ln =: ( aXb1-  b’[a.l)ln 

2 
n 

= -- (U,  J(a;[ t ; ] -b”[n.]))  

= -2(E, &+,(E)). U 

Lemma 2. For the Lax operators A,, in (2.9) and (2.10), B in (2.11) and spectral 
operator L in (2.6), let us define 

U,, = diag (A,,, -A:) V = diag ( E ,  - E * )  T = diag (L, L*) (3.13) 

for slmp!icity, then 

Tl.7,“=0 Tk[d.]= un1nTm (3.14a, b )  

where T , ( E )  is in (3.10), and T,,,(E), m > 1 are defined recursively as follows: 

T m + , ( E ) = T k [ 6 1 1 -  VInTm. (3.15) 

Proof: We only need to prove the first component of (3.14), the other can he proved 
similarly. The first component of (3.14a) for n = 1 can be checked easily since q and 
r satisfy (3.2), if we have L I R ~ ; ) = 0 ,  then take the Gateaux derivative in the direction 
6 ( U )  and note that 

(L ln ) ‘ [@l=b(u) ln=IB,  LIIn (3.16) 

we find 
( 1 )  0 = L l n ( T ~ ) ) ’ [ 6 ]  + [ E ,  L ] (  R T ~ ’ =  LIn (( T : ’ ) ‘ [ 6 ]  - BI R T ~ ’ )  = LI R T , ” + ~ .  

Thus we have (3.14a) for all n. 
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To prove (3.14b), we need to calculate 

a 
A;[b](, =lim - A,(u + Eb)lR 

r - 0  J E  

J 
=lim - A.(-2(q+~b"))(T+ EbI2')) 

6-0  dE 

J 
e - o  J E  

= lim- (AnlR)( U + e6)  

= (A"~R)'[@ (3.17) 

and similarly 

B'[a.llR = ( B I R ) ' [ ~ I  (3.18) 

so for the first component in (3.14b), when n =  1, it holds trivially. If ( ~ E ' ) ' l [ d . ] =  
AnIRd1)  for the fixed n and arbitrary m, then for arbitrary m, 

((T!,!')'[ a,])'[ 61 = (A.lR)'[ ~]T;'+A.IR( ~!,!))'[6] 

= ( A ~ [ ~ ] + A . B ) ( . T ; ' + A . ( . T ~ ! ,  

(( &!))'[6])'[G,,] = (B'[a.]+ BA.)~RT;'+ (Tii,)'[dn] 

here we have used (3.15), (3.17) and (3.18). Since 6 generates d, in the same way as 
b does in (2.3), and B generates A, in (2.10), so the difference of the left-hand side 
of the above two equations gives rise to 

(T!,!')'(6'.[6]- @[a,,]) = f l (  T!,!')'[dn+i] 

and the difference of the right-hand side yields ~ I A , , + ~ I ~ T ~ ~ .  
This implies that the first component in (3.146) holds for n + 1 and arbitrary m. 0 

Lemma 3. For U. and V in (3.13) and d . ( g )  in (3.8) we have 

u"~Ra=a,(u)  (3.19) 

VIR# = 6 ( 6 )  - T 1 ( i i ) .  (3.20) 

Proof: Equation (3.19) for n = 1 , 2  and (3.20) can he checked directly. If (3.19) holds 
for n, then by using (3.17) and (3.18), we have 

1 
A,+,l,q =;(A'.[bl- B'[a,l+[A,, Bl)lRq 

1 
=- ( (AHl~) ' [61q - ( B ~ R ) ' [ ~ ~ ~ ~ + " ~ R ~ ' ' ' - B ~ ~ ~ ~ ' - A , , ~ ~ T ~ )  n 

1 
= - ( ( A . I R ~ ) ' [ ~ ]  - (B(R~) ' [&] -A. (RTI )  n 

1 
= - ( ( d y ' ) ' [ 6 ]  - ( 6 " ' ) ' [ d n ]  + T\[i,,] - A.~ ,T~)  

n 
-a " '  
- "+,(U).  

equations (3.19) can also be proved in the same way. 
Thus the first component in (3.19) holds for all n. The second component of the 

0 
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Theorem 1. When q and r satisfy (3.2), we have: 

are constrained by (3.1) to the AKNS hierarchy 
( i )  The linear systems (2.7) together with their adjoints (2.14) of the KP hierarchy 

U'" = E " ( < ) .  (3.21) 

(ii) For any solution q and r of both (3.2) and the nth-order equation in (3.21), U 
given by (3.1) (i.e. U = -2qr) satisfies the nth-order equation in the KP hierarchy (2.1). 

(iii) Corresponding to such potential U = -2qr of the KP hierarchy (q, p*) = ( q ,  r ) ,  
or= rm in (3.15) are the eigenfunctions and the adjoint eigenfunctions, namely two 
components of h and r m ( h )  solve (2.7) and (2.14) respectively, with respect to the 
potential U = 2qr. 

The first and third facts in the theorem are the results of lemma 3 and lemma 2. 
For the second fact, we have 

(ut" - % ( u ) ) l R  = -2(% J(htn -an(c))). 
The right-hand side is zero implies U = -2qr solves (2.1). 

In [ 5 ] ,  soliton-like solutions and the solutions periodically along the x-axis of the 
KP equation (1.1) have been derived from the solitons and periodic solution of the 
1 + 1 dimensional system consisting of (3.2) and (3.3). 

There are some other consequences. Firstly, lemma 1 gives the correspondence 
between symmetries of KP and AKNS hierarchies. The conserved covariants 

?'.(U)= J;'a.(u) (3.22) 

for the KP hierarchv and 

y " ( h ) =  on.(u) o = (  O 1)  
-1  0 (3.23) 

for the AKNS hierarchy are related by 

J 
- ( ? ' n ( U ) / R ) = - 2 < G ,  m3?n(h)) (3.24) 
J x  

where u3 is the Pauli matrix. This means the conserved covariants (3.22) of the K P  

hierarchy are restricted to the conserved densities of the AKNS systems. 
Secondly, the stationary equations 

a,(u)  = O  (3.25) 

of the KP hierarchy are constrained by (3.1) to the system consisting of (3.2) and the 
stationary equation of (3.21). The latter is a finite-dimensional integrable system (see 
e.g. [15]). For example, when n = 3 the stationary equation E , ( i i )  = 0 (i.e. the stationary 
generalized mKdv of (3.3)) can he written as 

(3.26) 

(3.27) 

(3.28) 
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According to these variables, (3.2) is also the equation of motion of a finite-dimensional 
Hamiltonian, i.e. 

Y Cheng and Y-s Li 

(3.29) 

with 

H2= (9,9:~3-2419293~2-29:q: +2dpIq3+ &d+ ~ P : - P , P ~ .  (3.30) 
Thus the stationary KP equation 

a,(u) = a  J ~ ’ u , + ~ u , , ,  +& = O  (3.31) 

which is also called the Boussinesq equation in 1 + 1 dimensions, and the associated 
linear systems are constrained by (3.1) to the finite-dimensional integrable Hamiltonian 
systems (3.26j and (3.29). 

4. Constraint of KP hierarchy to Burgers hierarchy 

In this section we show that the KP hierarchy can also be constrained to the linearizable 

by  solving the linear equations. Let us identify the potential U with the eigenfunctions 
p as follows: 

B-rgers hierarchy, 2nd so e :ub-anifc!d so!l?tion of :!le YP hie:archy CB” be obtained 

(4.1 ) U = 29, = 29, 

qy + y= + 2yqx = 3 

the spectral problem (2.6) is then reduced to 

(4.2) 
which is the Burgers equation. Substituting (4.1) into (2.7) for n = 3 and using (4.2), 
we obtain the following third-order equation in the Burgers hierarchy: 

(4.3) 4t3 = 9u+39qxx +3q: +39’9*. 
Conversely, if 9 solves both (4.2) and (4.3), then U = 29, can be checked directly to 
solve the  equation (1.1). Equations (4.2) and (4.3) are linearizable by the Cole-Hopf 
transformation 

Tx q =- 
7 

(4.4) 

i.e. they are transformed by (4.4) to 

TY = - 7xx Tr, = 7xxx (4.5) 
respectively. Thus the solution of linear system (4.5) gives rise to the solution 

(4.6) 

ofihe XP e ~ p a t i ~ i i  [:.:), which is ii; :he s a m  fa:= as :ha! i:: :he ‘T-kncticn’ !hecry. 
The exact solutions obtained in terms of such constraint have been shown in [7]. In 
the following we investigate the same constraint for the whole of the K P  hierarchy. 

a2 
axz 

U = 29, = 2-In T 

Denoting 

F(u)IR,= F ( U ) I ~ = , ~ .  (4.7) 
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for a scalar or an operator F(u), where q sarisfies the Burgers equation (4.2). 

Lemma 4. For a,(u) ,  b ( u )  in (2.2)-(2.4) and the Lax operators A,(u), B(u) in 
(2.9)-(2.11), we have 

anln, =2Jx(&(q)) (4.8) 

bln,=2Jx(g(q)) (4.9) 

and 

A. ln,4 = & ( q )  (4.10) 

n,q = 6( 9 )  (4.11) 

where 

& ( q ) = V I q x  (4.12) 

6(q) =2y&(q)+xC,(q) -2qx-q2+ qx (4.13) 

and 

'P= - ( J x  + q + q x J ; ' )  (4.14) 

is the recursion operator of the following Burgers hierarchy: 

%" = & ( q ) .  (4.15) 

ProoJ Note that the term x&(q)-2q,-q2 in (4.13) is the mastersymmetry of the 
Burgers hierarchy (4.15); it generates &, in the same way as b ( u )  does in (2.3). So 
6 ( q )  in (4.13) plays the same role, namely g(q)  also generates & in the same way as 
b ( u )  does in (2.3) (see e.g. [16,17]). Therefore one can firstly check (4.8) and (4.10) 
for n = 1 ,  and (4.9) and (4.1 l ) ,  by direct calculation. Then by induction (4.8) and (4.11) 
for arbitrary n can be proved. U 

So we conclude that when q solves the Burgers equation (4.2), then: 
(i) The linear systems (2.7) of the KP hierarchy are constrained by (4.1) to the 

Burgers hierarchy (4.15). 
(ii) For any solution q of both (4.2) and (4.15), u=2qX solves the equation (2.1) 

of the K P  hierarchy. Since (4.15) can be transformed by (4.4) to the linear equations 
for T, so the solution of the K P  hierarchy can also be obtained in the form (4.6) with 
T satisfying 

ry= - ( J : T )  T,,, = ( - l )"- ' (a:r ) .  (4.16) 

Remarks. It is worth noting that firstly in the Sato theory, the 7-function of the K P  

hierarchy can be expressed as the determinant with the elements satisfying the linear 
equations (see e.g. [ IS ] ) .  Our second result in the conclusion probably coincides with 
this fact in the Sato theory. Secondly, by using the dressing method, a class of solutions 
of the KP equation can be derived in terms of the solutions of the linear systems (4.5) 
(see e.g. [19] ) .  The soliton-like solutions obtained from the constraint (4.1) is a special 
case of the known ones derived by the dressing method as well as the Hirota bilinear 
method [7]. 
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5. Constraints for other soliton equations in 2 + 1 dimensions 

Let us consider the following modified K P  equation: 

Y Cheng and Y-s Li 

U, =i(u,,, -6u2ux - 6 ~ , a ; ~ u ,  +3a;'u,). 

It is the compatibility condition of [20] 

vy + Pxx +2uvx = 0 (5.2) 

v, = v ~ ~ ~ + 3 v ~ ~ ~ + + t ( u , + u 2 - a ; ' u , ) v ~ .  (5.3) 

*).- ILXX+2U*, = 0 (5.4) 

( 5 . 5 )  

The conserved covariant generator in this case is v$ where J, = (px)* satisfying 

.I. - . a .  =1.d. 31.. = . . 2 L C l . .  \ . 1 .  
Y Y I - Y X X X  -'?Lxx-21+ " T O X  V y l Y x .  

If we identify U with the conserved covariant generator p$ as follows: 

u = pJ,= qr (5.6) 

where q = p, r = 9 are used for simplicity, then substituting (5.6) into (5.2) and (5.4) 
yields 

qy=-qu-2qrqx (5.7a) 

rv = r,, -2qrr, (5.76) 

while (5.3) and (5.5) are constrained to 

q, = qnx + 3qrqxx + 3( q2r2 + qxr)qx 

r, = rxxx - 3qrr,, + 3( q r - qrx)rx. 

(5.8a) 

(5.86) 

Equation (5.7) is the generalized NS equation with derivative coupling given by Chen 
et a1 [21] and (5.8) is the higher-order equation of (5.7). Both of them are Hamiltonian 
with 

2 2  

H3= (qr, ,+q3(r3)~-2q2(r2)_) dx. (5.10) 

Their integrability has been shown in [21],  and the gauge equivalence to the generalized 
derivative NS equation can be obtained [221. 

One can also check that when q and r solve (5.7) and (5 .8 ) ,  U = qr solves the m K P  
(5.1). 

By the Miura transformation of [20] 

J 

U = -(a;'U,+ v ,+u2)  (5.11) 

the solution of m K P  in the form of (5.6) is transformed to the solution of K P  (1.1) 
U = -2qr,, namely once q and r solve both (5.7) and ( S A ) ,  U = -2qr, solves the K P  

equation. 
Next, if we insert 

u = p = q  (5.12) 
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into (5.2) and (5.3) respectively, we again obtain the Burgers and the third-order 
Burgers equation (4.2) and (4.3), and conversely the solution of both (4.2) and (4.3) 
also solves the ~ K P  (5.1). 

This solution is transformed by (5.11) to the trivial solution of the KP. 

Let us now consider a more complicated example given in [le], 

-2 (  a, -1  u~,-u,J;'u,-~u,,,-u,u,-uu,-u~u,-u~~~-uu~). (5.13) 

This is the 2 +  1 dimensional analogue of the CDGKS equation and is the compatibility 
condition of the following linear systems 1201: 

Qy + Qrxr + UQX = 0 (5.14) 

Qr = Qxxxxx + $( UQxxx + U x Q p , )  -b $(2Uxr + u2 - a;'Uy)Qp,. (5.15) 

fo!!ows: Firstly, if .:/e i&&fy 2 .&h $ 
U = - 6 ~ '  = -6q2 (5.16) 

(5.14) and (5.15) become 

qy+qxU,-6q2qx=0 (5.17) 

(5.18) q, = qxxxu - 1Oq qnX -40qqxqxx + 30q4qx - 10s: 

which are the mKdv and the higher-order equation next to mKdv in the same hierarchy. 
Thus a submanifold solution of (5.13) can be obtained by solving both (5.17) and (5.18). 

U = 6~ = 6 p  (5.19) 

2 

Secondly, inserting 

into (5.i4j and (Lis), we have 

pY + pxXx + ~ P P ,  = 0 

P, = pxxUx + I O P P ~ ~ ,  + ~ O P &  + 30p2px 

(5.20) 

(5.21) 

which is the Kdv and the fifth-order Kdv equations. The solution p of both (5.20) and 
(5.21) also gives rise to solution U = 6 p  of (5.13). 

The equations (5.17) and (4.18) can be transformed by the Miura transformation 

= -4 - q 2  (5.22) 

to (5.20) and (5.21) respectively. If a solution U = -6q2 of the 2 +  1 dimensional CDGKS 

equation (5.13) is obtained by the first constraint, then by using the Miura transforma- 
tion (5.22), we find 

(5.23) 

is the solution of (5.13) which can be obtained by the second constraint. Equation 
(5.23) implies that ri can be expressed in terms of U, i.e. 

Is = 6 p  = -6qx-6q2 

& U, *-- 
2 

(5.24) 

This is the Backlund transformation of the equation (5.13), which transforms solutions 
obtained by the first constraint to the solutions obtained by the second constraint for 
the same equation (5.13). It is not yet clear whether (5.24) gives the general Backlund 
transformation of (5.13). 
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Remarks. All the constraints for ~ K P ,  or 2 +  1 dimensional CDGKS equations, can be 
generalized to their higher-order equations in the same way as we have shown for the 
KP hierarchy, since the mastersymmetries and their correspondent Lax operators have 
been given in [23]. 

Y Cheng and Y-s Li 

6. Concluding remarks 

We have shown that some 2 + 1  dimensional integrable hierarchies of the soliton 
equations can he constrained to the well known 1 + 1 dimensional integrable systems. 
One of the important consequences is that varieties of solutions of the equations in 
2 + 1 can be obtained by solving the resulting integrable systems in 1 + 1 dimensions. 
The constraint for each equation discussed in this paper is not unique. It is, therefore, 
natural to ask whether there exists other constraints for a 2+ 1 dimensional integrable 
system playing the same role as those given in the present paper, or resulting some 
new integrable systems in 1 + 1 dimensions. This question probably relies on the problem 
of the existence of a role for making a constraint in the sense that the integrability of 
the given 2+ 1 dimensional soliton equation is inherited by the resulting systems in 
1 + 1 dimensions. 
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