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Abstract. We show that the linear systems associated with some integrable hierarchies of
the soliton equations in 2+ 1 dimensions can be constrained to integrable hierarchies in
1+1 dimensions such that submanifolds solutions of the given systems in 2+1 can be
obtained by solving the resulting integrable systems in 1+1 dimensions, The constraints
of the KP hierarchy to the AKNs and Burgers hierarchies respectively are shown in detail
and the results of these for the modified kp and 2+1 dimensional analogue of the
Caudrey-Dodd-Gibbon-Kotera-Sawata equations to several integrabie systems in 1+1
are given.

1. Introduction

It has been shown that many finite dimensional integrable systems naturally arise as
the restriction of integrable hierarchy of the soliton equations in one spatial and one
temporal (i.e. 1+ 1) dimensions to a finite dimensional manifold invariant with respect
to all equations in the hierarchy (see e.g. [1-4]). A well known example is the constraint
of the Korteweg-de Vries (kdv) hiearchy to the pure multisolitons submanifold [1, 2].
In this case, the constraint is realized by the identification of potential of the kav
hiearchy to the squared eigenfunction and the resulting finite dimensional systems for
th eigenfunction as the dynamical variabie can be proved to be compietely integrabie
in the sense of the Liouville theorem [3, 4].

Recently, the above study has been generalized to the soliton equations in two
spatial and one temporal (i.e. 2+ 1) dimensions [5, 6]. For instance, by identifying the
potential u (i.e. the simplest conserved covariant) of the following Kadomtsev-
Petviashvili {kp) equation

u, = ay(u) =337 u,, + it +3un, (1.1)

to its squared eigenfunction g¢™ (i.e. the conserved covariant generator), the associated
linear systems for ¢ and their adjoints for ¢* are constrained to the 1+ 1 dimensional
integrable system consisting of the generalized nonlinear Schrodinger (ns) and the
generalized modified kav (MKdv) equations [5, 6]. These equations are the first two
non-trivial ones in the AkNs hiearchy. As a consequence, one is able to obtain solutions
of the kP equation by solving the resulting integrable system in 1+ 1 dimensions.
The main purpose of the present paper s to investigate the constraints for the
linear systems associated with all the integrable hiearachy of equations in 2+1
dimensions. First of all, we show that the constaint u = —=2¢¢™* of [5, 6] on the linear
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420 Y Cheng and Y-s Li

systems and their adjoints of the kP hierarchy leads to the whole of the AxNs hierarchy
for dynamical variables ¢ and ¢*. This constraint is a natural generalization of that
for the kdv hierarchy; however, it is by no means unique in the sense that a constraint
leads the integrable system in 2+ 1 to the integrable systems in 1+1 dimensions. In
section 4, we show that the other constraint 4 = 2o, on the potential and the eigenfunc-
tion leads the linear systems of the kP hierarchy ta the 1+1 dimensional Burgers
hierarchy which is linearizable by the Cole-Hopf transformation. An important sig-
nificance of these two constraints is that the submanifolds solutions of the xp hierarchy
can be constructed by solving the resulting 1+ 1 dimensional integrable systems. Here
we are not going to display these solutions of the kp hierarchy obtained in this way—the
interested reader can find them in our previous papers {5, 7]. In section 5, we show
the similar constraint of other 2+1 dimensional integrable systems including the
modified Kadomtsev-Petviashvili {MxP) and the 2+1 dimensional analogue of the
Caudrey-Dodd-Gibbon-Kotera-Sawada (CcDGKS) equations, and give concluding
remarks in the last section.

Since we will describe the constraints of the kP systems in detail in section 2 we
give a brief survey of the construction of the kP hierarchy and the associated linear
systems in ferms of the mastersymmetry approach.

2. The kP hierarchy
The kP hierarchy constructed in terms of the mastersymmetry approach is the following
class of commuting flows (see e.g. [8-10])

u, =a,{u) (2.1)
where

a,(u)=u, a(u) =u, as(u) is in (1.1) 2.2)

=152 =1 L
a4(u)_2ax uyyy+uxax uy+2uxxy+2uuy

and the other higher-order ones are derived by
1
apsr(u) =" {an[b]- bTa,1) (2.3}

with

b(u)=2ya;(u)+ xa,(u)+20;"'u, (2.4)
being the first non-trivial mastersymmetry [8-10]. a[b], etc. in (2.3) denotes the
Gateaux derivative of a,(u)

al[b]=lim— a,(u+ eb) 2.5)
' e~0 g€

in the direction b(u), etc.
For n =3, (2.1) is the xp equation (1.1). All the equations in (2.1) are the compatibil-
ity conditions of the following linear systems [11, 12]:

Le=0 L=g,+83+u (2.6)
@, = A (2.7)
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where the Lax operators are the polynomials in §, such that

a,(u)=[A,, L] (2.8)
identically. These Lax operators are derived as follows:

Ai(u) =3, Ay(u)=~(a3+u)

Aq(u) =3+ b, + X, ~07w,) (29)
and the others are given by

Aves = (A1[6]- Bla,1+[A,, B) 2.10)
where

B(u)=2yA;+xA,—d, —39; u (2.11)
satisfying

b(u)=[B, L] (2.12)

identically. The operator B(u) in (2.11) is also a polynomial in 8, but with the leading
term’s coefficient being proportional to y. It generates all A, in the same way as the
mastersymmetry b{u) of (Z2.4) does in (2.3).

For an operator A(u) =23 a,(u)a3.d’, if we define its adjoint formally by A*(u)=
3 (—1)""a, - a;(u), then the adjoints of the linear systems read

L*g*=0 L*=a,-32—u (2.13)

(0%, =—AZe* (2.14)
The operators A also satisfy

a,(u)y=[L% A}]. (2.15)
They can be generated independently by

1

Al = :((A*) [6]1-(B*)[a.1+[B*, A (2.16)
with

B*=2yAY+xA¥ -9, —3 (65 u). (2.17)

The quantity @¢* is the well known squared eigenfunction of the kP system. It
also solves the equation [13]

7., = —(a,)*[7] (2.18)

for 7(u), thus @e* is the conserved covariant generator of the xp hierarchy (2.1).

3. Constraint of the kp hierarchy to the axns hierarchy

Let us identify the simplest conserved covariant u of the ke hierarchy with the conserved
covariant generator g¢* as follows [5, 6]:

u=-2pp*==2qr (3.1)
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where g = ¢ and r= @™ are used for simplicity. The spectral problem (2.6) and its
adjoint (2.13) then become

g,=— (g —29"r) (3.2a)
r, = (re—2gr") (3.2b)

which is the generalized Ns equation for the dynamical variables ¢ and r. Inserting
(3.1} into the linear equation governing the time evolution of the eigenfunction and
its adjoint for the kP equation (1.1) (i.e. the equation in {2.7} and (2.14) with n=3)
and using (3.2) leads to the generalized mkdv equation
q:; = (qxxx - 66]"%:) (330)
tey = (Foxe — 6411y ). (3.3b)

The resulting equations {3.2) and (3.3) are the first two non-trivial equations in the
1+1 dimensional aAkns hierarchy. Conversely, if ¢ and r solve both {3.2) and (3.3),
then u given by (3.1) solves the kp equation (1.1). Exact solutions of the Kp equation
obtained in this way have been shown in [5].

In the following, we show that if ¢ and r satisfy (3.2), the constraint (3.1) leads to
the whole of the linear systems (2.7) and their adjoints (2.14) of the kp hierarchy to
the whole of the AkNs hierarchy, and solutions of both (3.2) and the nth-order equation
in the AKNS hierarchy give rise to solutions of the nth-order kP equation in (2.1).

For a scalar or an operator F{u) depending on u, we define that
F(u)lR =F(u)|u=—2qr (3-4)

is the scalar or operator depending on g and r, where q and r satisfy the generalized
Ns eguation (3.2).

Lemma 1. For a,(u) and b(u) given in (2.2)-(2.4}, we have

a,(u)|r =~2(#, Ja, (i)} (3.5)
b(ulig = —~2#, Jb(i1)) (3.6)
where

_ {q {01

() (0
(1) _

&n(ﬁ)=(;§2)) =cb"( rq) (3.8)
B'(l)

b(a):(g(z)) =2yd () + xd (@) +21,(iF) (3.9)

-1
qx + qax qr) (3'10)

r.—ro'qr

() =(

and @ is the recursion gperator of the AKNS system
_ -1 -1
q>=( Bx %2937 249x 4 ) (3.11)
“2rga;'r  8,-2ré g

In (3.5) and (3.6), {,) is defined as

(_f; g) =f(1)g(1)+f(2)g(2) (3.12)
for any f=(f'",f®)" and g=(g", )"
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Proof. Notice that b(iF) in (3.9) also generates 4, in the same way as b(u) does in
(2.3); it plays the role of mastersymmetry of the Akns hierarchy (see e.g. [14]). By
direct calculation, we can check (3.5) for n =1 and (3.6). If (3.5) holds for arbitrary
n, then

a
ay[b]lg =lim— a,(u+ b)|r
e+0dE
—tim <= a,(~2(g + ebV)(r + £6®))
E—+{ aE

a
=lim Y. —2{a+eb, Ja,(d+eb))

£+0
-24, Ja, (b)) - 2b, Ja,)
and similarly
bla,)r = ~28, Jb'(a,))-2a,, Jb).
Thus for n+1, we find

an+l(u)|n=l;<a;{b]—b'[a,,mn

2 -
=- 18 J(a.[b]-b'[d.])
= '2(17, Jdn+l(ﬁ))- O
Lemma 2. For the Lax operators A, in (2.9} and (2.10), B in (2.11} and spectral
operator L in {2.6), let us define
U,=diag (A,, —A¥) V =diag (B, —B*) T =diag (L, L*) (3.13)

for qlrnnhmtv then

TIRTm=0 T:,.,[ﬁ,.,]= UanTm (314(1, b)
where r,(i#) is in (3.10), and 7,{id), m>1 are defined recursively as follows:

T () = 70, [B] = V[ R T, (3.15)
Proof. We only need to prove the first component of (3.14), the other can be proved
similarly. The first component of (3.144) for #» =1 can be checked easily since g and

r satisfy (3.2), if we have Lig7\’ =0, then take the Gateaux derivative in the direction
b(i#) and note that

(L&) b1 = b(u)lx =|B, Lllx (3.16)
we find

0=L|g(7’)[B1+[B, L) r7l’ = LIr((r5)[B]— Blr7i") = Lla 7)1
Thus we have (3.14a) for all n.
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To prove (3.14b), we need to calculate

AL[B]lx =Tlim = A, (u+eb)|n
F0gE
=lim LA A (—2(g+eb'V)(r+eb'™)
e=0 dg

—hm (AI V(i + eb)

=(Anln)'[b] (3.17)
and similarly
B'la,]lx = (Ble)&] (3.18)

so for the first component in (3.14b), when n=1, it holds trivially. If (+\\'Y|[@.]=
A,|r7" for the fixed n and arbitrary m, then for arbitrary m,
(71, 1Y[B] = (A4lR) [b175) + A, () 6]
=(AL[b]+ A, B)[RTSr:)-I'An[RTL]u?H

(r) 161 (@] = (Ba,]+ BA,)|arly’ + (731 [4,]

m+1

here we have used (3.15), (3.17) and (3.18). Since & generates @, in the same way as
b does in (2.3), and B generates A, in (2.10), so the difference of the left-hand side
of the above two equations gives rise to

(v (@nlbl-b'la.n = n(r.) (0]

and the difference of the right-hand side yields nA, |74’ .
This implies that the first component in (3.14b) holds for n+ 1 and arbitrary m. O

Lemma 3. For U, and V in (3.13) and a,(&) in {3.8) we have
U|att = a,(it} (3.19)
Vit = b(@) — 7,(a). (3.20)

Proof. Equation (3.19) for n =1, 2 and (3.20) can be checked directly. If (3.19) holds
for n, then by using (3.17) and (3.18), we have

Avilrd =%(A;[b] - Bla]+[A,, Blleg

::I—-

((Anlr)[B1g —(Blr)[du]q+ A,lxb"" — Blzal —~ AujrT:)

I |-

(A4 g} (0]~ (Blrq)[d.]- Adlr7)

= =

(@bl - (8"Y[a,1+ ri[a,] - AdlrT))

= d‘"’l](u).

Thus the first component in {3.19) holds for all ». The second component of the
equations (3.19) can also be proved in the same way, 1
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Theorem 1. When g and r satisfy (3.2), we have:
(i) The linear systems (2.7} together with their adjoints (2.14)} of the xp hierarchy
are constrained by (3.1) to the AKNs hierarchy

@, = a,(a). (3.21)

(ii) For any solution ¢ and r of both (3.2} and the nth-order equation in (3.21}, u
given by (3.1) (i.e. u = —2gr) satisfies the nth-order equation in the kp hierarchy (2.1).

(iii} Corresponding to such potential u = —2g+ of the kp hierarchy (¢, ¢*}=(g, 1),
or=r, in {3.15) are the eigenfunctions and the adjoint eigenfunctions, namely two
components of # and 7,,(d) solve (2.7) and (2.14) respectively, with respect to the
potential u =2gqr.

The first and third facts in the theorem are the results of lemma 3 and lemma 2.
For the second fact, we have

(tiy, ~ a (1)) e = =24, J (&1, — a,(7))).
The right-hand side is zero implies u = —2gr solves (2.1).

In [S], soliton-like solutions and the solutions periodically along the x-axis of the
kP equation (1.1) have been derived from the solitons and periodic solution of the
1+ 1 dimensional system consisting of (3.2) and (3.3).

There are some other consequences. Firstly, lemma 1 gives the correspondence
between symmetries of KP and aAkns hierarchies. The conserved covariants

Yultt) =35 an(u) (3.22)
for the kp hierarchy and
01
¥a(it) = 0a, () 0=(_1 o) (3.23)

for the AxNs hierarchy are related by

aim(u)m=—z<a, 73 7u (@) (3.24)
X

where o is the Pauli matrix. This means the conserved covariants (3.22) of the kp
hierarchy are restricted to the conserved densities of the AkNs systems.
Secondly, the stationary equations

a,{u)=0 (3.25)

of the xp hierarchy are constrained by (3.1) to the system consisting of (3.2} and the
stationary equation of (3.21). The latter is a finite-dimensional integrable system (see
e.g.[15]). For example, when n =3 the stationary equation @,{#&) = ( (i.e. the stationary
generalized mkdv of (3.3)) can be written as
_sH, _5H,

= i=1,2,3 2
ap; 8q; I (3.26)

qiﬁf pix =

with Hamiltonian
Hy=(p,ps+ q2p, —3414293) (3.27)
and the dynamical variables

a4.=9 g2 = g« g ="r
3.28
Pl"—“‘fxx+3qf2 P2=1Tx P3= xx- ( )
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According to these variables, (3.2} is also the equation of motion of a finite-dimensional
Hamiltonian, i.e.
6H, 6H, .
qiyﬂa_pj pt'y= —E I=1!2’3 (3.29)
with

H,= (‘11‘I§P3 =2¢,14:093P> — 2‘]?9’; +2qipgs+ ngg"' qiP2—Pip3). (3.30)
Thus the stationary kP equation

a3(u) =305 "ty + it +iun, =0 (3.31)

which is also called the Boussinesq equation in 1+ 1 dimensions, and the associated
linear systems are constrained by (3.1) to the finite-dimensional integrable Hamiltonian

systems (3.26) and (3.29).

4, Constraint of xp hierarchy to Burgers hierarchy

In this section we show that the kP hierarchy can also be constrained to the linearizable

Ruroare hiararchy and ca a3 enhmanifald solution of the ¥ hierarchy
AT Ak RAWSAE WL O LIRW Ml L

A a3 lll\.ll.l'-ll\fll_,, CRLl%E OJWF 4 JULLIIGLLII VIY J £an hﬂ nhfﬂlﬂﬂ!‘

r
Hvidivily Wil UL YUlaluoia

by solving the linear equations. Let us identify the potential u with the eigenfunctions
¢ as follows:

u=2¢,=2q, (4.1)
the spectral problem (2.6) is then reduced to

A\
L}

——
Fu

9+ Goc T 294, =0
which is the Burgers equation. Substituting (4.1) into {(2.7) for n =3 and using (4.2)
we obtain the following third-order equation in the Burgers hierarchy:

4y = Grnx + 344, + 395 +34°g,. (4.3}

Conversely, if g solves both (4.2) and (4.3), then u=2g, can be checked directly to
solve the K equation (1.1). Equations (4.2) and (4.3) are linearizable by the Cole-Hopf
transformation

g=— (4.4)

r
i.e. they are transformed by (4.4) to
Ty = ~Txx T, = Taxx (4-5)

respectively. Thus the solution of linear system (4.5} gives rise to the solution
32
u=2¢g,=2—<Inr (4.6)
9x Py
of the kP equation (1.1), which is in the same form as
The exact solutions obtained in terms of such constraint have been shown in [7]. In
the following we investigate the same constraint for the whole of the kp hierarchy.
Denoting

F(“)lklz -F(l“)|m=:2.qY (47)

that 1
Liiqav 11

nt fw_functian® t
L [ 'k i LY
5
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for a scalar or an operator F(u), where q satisfies the Burgers equation (4.2).

Lemma 4. For a,(u), b(u) in (2.2)-(2.4) and the Lax operators A,(u), B(u) in
{2.9)-(2.11), we have

a,| r, = 23.{d.(q)) (4.8)

blr,=20.(b(q)) (49)
and

Aulr,g=a.(q) {4.10)

Blrg=b(q) (4.11)
where

a(q)="""g, (4.12)

b(q) =2yd:(q)+xd:q) ~29.— 4"+ 4. (4.13)
and

W= —(8,+g+4g,.97") (4.14)

is the recursion operator of the following Burgers hierarchy:

q., = d.(q). (4.15)

Proof. Note that the term xd,)(q)-2q,—g° in (4.13) is the mastersymmetry of the
Burgers hierarchy (4.15); it generates 4, in the same way as b(u) does in (2.3). So
b(q) in (4.13) plays the same role, namely E(q) also generates 4, in the same way as
b(u) does in (2.3) {(see e.g. [16, 17]). Therefore one can firstly check (4.8) and (4.10)
for n=1,and (4.9) and (4.11), by direct calculation. Then by induction (4.8) and (4.11)
for arbitrary n can be proved. O

So we conclude that when g solves the Burgers equation (4.2), then:

(i) The linear systems (2.7} of the kp hierarchy are constrained by (4.1) to the
Burgers hierarchy (4.15).

(ii) For any solution g of both (4.2) and (4.15), u=2q, solves the equation {2.1)
of the xp hierarchy. Since (4.15) can be transformed by (4.4) to the linear equations
for 7, so the solution of the kp hierarchy can also be obtained in the form (4.6) with
7 satisfying

7, =—(9%r) 7, = (=1)""'(@3%7). (4.16)

Remarks. It is worth noting that firstly in the Sato theory, the r-function of the xp
hierarchy can be expressed as the determinant with the elements satisfying the linear
equations (see e.g. [18]). Our second result in the conclusion probably coincides with
this fact in the Sato theory. Secondly, by using the dressing method, a class of solutions
of the xp equation can be derived in terms of the solutions of the linear systems (4.5)
(see e.g. [19]). The soliton-like solutions obtained from the constraint (4.1) is a special
case of the known ones derived by the dressing method as well as the Hirota bilinear
method [7].
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5. Coustraints for other soliton equations in 2+ 1 dimensions

Let us consider the following modified kp equation:
v, = 4{(Vae — 6070, — 60,87 0, +335 ' 0,,). (5.1)
It is the compatibility condition of [20]
@+ @ux + 200, =0 {5.2)
@1 = Crex T 3000 +3(05 07 =35 1,) @, (5.3)

The conserved covariant generator in this case is ¢ where ¢ =(¢,)* satisfying

'vby"_d’xx-f'zvlpx:() (54)
- 3 _ .24 al
Wy ¢xxx:3'-"¢5xx_2\”x70 +ax "‘y}ﬁ”x (5 5)

If we identify u with the conserved covariant generator ¢y as follows:
v=g=gr (5.6)

where g = @, r = are used for simplicity, then substituting {5.6) into (5.2) and {5.4)
yields

Gy = ~Gxx — 2G7qx (5.7a)

¥, = —2qrm, (5.7b)
while (5.3} and (5.5) are constrained to

4= Qe + 3070 +3(07r + 4, )4 (5.8a)

¥ = Lo = 3qrr + 3(g7 1 — gr) 1 (5.8b)

Equation (5.7} is the generalized ns equation with derivative coupling given by Chen
et al {21] and (5.8) is the higher-order equation of (5.7). Both of them are Hamiltonian
with
R
H,= | (ara=4'(r")) dx (59)

H3=J (e + 7). =267 (1) 1) dix. (5.10)

Their integrability has been shown in [21], and the gauge equivalence to the generalized
derivative Ns equation can be obtained [22].

One can also check that when g and r solve (5.7) and (5.8), v = gr solves the mkp
(5.1).

By the Miura transformation of [20]
u=-(3;"v,+ v, + 0% (5.11)

the solution of mkp in the form of (5.6) is transformed to the solution of kp (1.1)
u=—2gr,, namely once g and r solve both (5.7) and (5.8), u=—2g¢r, solves the kp
equation.

Next, if we insert

bmp=g (5.12)
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into (5.2) and (5.3) respectively, we again obtain the Burgers and the third-order
Burgers equation (4.2) and (4.3), and conversely the solution of both (4.2) and (4.3)
also solves the mkp (5.1),

This solution is transformed by (5.11) to the trivial solution of the KPp.

Let us now consider a more complicated example given in [18],

T | -1 1 2
u, = 9(ax uyy - uxax uy T lcxxx T Ul T Ul — WU — uxxy - uuy)' (5'13)

This is the 2+ 1 dimensional analogue of the cpGKSs equation and is the compatibiiity
condition of the following linear systems [20]:

@y F @esx T U, =0 (5.14)

@0 = Provonr T 3 UPoe + Ut ) +3 (20 + 07 =81 1 Yo, (5.15)
Firstly if we identify u with p? as follows

u=—-6¢>=—6q" (5.16)
{5.14) and (5.15) become

@+ Gun = 6G7G, =0 (5.17)

e = Gonxe = 1047 G — 409445 +30g° ¢, — 1047 (5.18)

which are the mkdv and the higher-order equation next to mkdv in the same hierarchy.
Thus a submanifold solution of (5.13) can be obtained by solving both (5.17) and (5.18).
Secondly, inserting

u=6@=06p (5.19)
into (5.14) and (5.i5), we have

Pyt Pxx T 6pp. =0 {5.20)

P1 = Prxcrx T 10PP +20pP + 30p°p, (5.21)

which is the kav and the fifth-order kdav equations. The solution p of both {5.20) and
(5.21) also gives rise to solution u = 6p of (5.13).
The equations (5.17) and (5.18) can be transformed by the Miura transformation

P=—8-4" (5.22)

t0 (5.20) and (5.21) respectively. If a solution ¥ = —64° of the 2+ 1 dimensional cpGks
equation (5.13) is obtained by the first constraint, then by using the Miura transforma-
tion {5.22), we find

i=6p=—6g.—6q" (5.23)
is the solution of (5.13) which can be obtained by the second constraint. Equation
{5.23) implies that @ can be expressed in terms of u, i.e.

__ Y6

= t——F=

2 vV-u
This is the Backlund transformation of the equation (5.13), which transforms solutions

obtained by the first constraint to the solutions obtained by the second constraint for
the same equation {5.13). It is not yet clear whether (5.24) gives the general Backlund

transformation of (5.13).

+ . {5.24)
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Remarks. All the constraints for mkPp, or 2+1 dimensional cbGks equations, can be
generalized to their higher-order equations in the same way as we have shown for the
kP hierarchy, since the mastersymmetries and their correspondent Lax operators have
been given in [23].

6. Concluding remarks

We have shown that some 2+1 dimensional integrable hierarchies of the soliton
equations can be constrained to the well known 1+ 1 dimensional integrable systems.
One of the important consequences is that varieties of solutions of the equations in
2+1 can be obtained by solving the resulting integrable systems in 1+1 dimensions.
The constraint for each equation discussed in this paper is not unique. It is, therefore,
natural to ask whether there exists other constraints for a 2+1 dimensional integrable
system playing the same role as those given in the present paper, or resulting some
new integrable systems in 1+ 1 dimensions. This question probably relies on the problem
of the existence of a role for making a constraint in the sense that the integrability of
the given 2+ 1 dimensional soliton equation is inherited by the resulting systems in
1+1 dimensions.
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